Extended Euclidean Algorithm (EEA)

Input: Integers a, b with $a \geq b>0$.
Initialize: Construct a table with four columns so that

- the columns are labelled x, y, r and q,
- the first row in the table is $(1,0, a, 0)$,
- the second row in the table is $(0,1, b, 0)$.

Repeat: For $i \geq 3$,

- $q_{i} \leftarrow\left\lfloor\frac{r_{i-2}}{r_{i-1}}\right\rfloor$
- $\operatorname{Row}_{i} \leftarrow \operatorname{Row}_{i-2}-q_{i} \operatorname{Row}_{i-1}$

Stop: When $r_{i}=0$.
Output: Set $n=i-1$. Then $\operatorname{gcd}(a, b)=r_{n}$, and $s=x_{n}$ and $t=y_{n}$ are a certificate of correctness.

9.3 Proving that the RSA Scheme Works

Now that we have seen two examples of RSA and the associated computations, we prove in the following result that the RSA scheme always works. What we mean by this is that we prove the Claim: $R=M$, that the plaintext message M and the decrypted message received R are identical.

Theorem 1 (RSA Works (RSA))

For all integers p, q, n, e, d, M, C and R, if

1. p and q are distinct primes,
2. $n=p q$,
3. e and d are positive integers such that $e d \equiv 1(\bmod (p-1)(q-1))$ and $1<e, d<(p-1)(q-1)$,
4. $0 \leq M<n$,
5. $M^{e} \equiv C(\bmod n)$ where $0 \leq C<n$,
6. $C^{d} \equiv R(\bmod n)$ where $0 \leq R<n$,
then $R=M$.

Proof: Let p, q, n, e, d, M, C and R be arbitrary integers, and assume that they satisfy parts $1-6$ of the hypothesis. Now, from parts 5 and 6 of the hypothesis, we have

$$
R \equiv C^{d} \equiv\left(M^{e}\right)^{d} \equiv M^{e d} \quad(\bmod n) .
$$

Since p and q are distinct primes, they must be coprime. Therefore, since $n=p q$, we can apply the Splitting Modulus Theorem to obtain that

$$
R \equiv M^{e d} \quad(\bmod p)
$$

and

$$
R \equiv M^{e d} \quad(\bmod q)
$$

Now, we prove that $R \equiv M(\bmod p)$, by considering the two cases $p \mid M$ and $p \nmid M$.

- Case 1: If $p \mid M$, then we have $M \equiv 0(\bmod p)$, and therefore,

$$
R \equiv 0^{e d} \equiv 0 \quad(\bmod p)
$$

Hence in this case both R and M are congruent to 0 modulo $p, \operatorname{giving} R \equiv M(\bmod p)$.

- Case 2: If $p \nmid M$, then p and M are coprime, so by Fermat's Little Theorem, we have

$$
\begin{equation*}
M^{p-1} \equiv 1 \quad(\bmod p) \tag{9.1}
\end{equation*}
$$

From part 3 of the hypothesis and the definitions of congruence and divisibility, there exists an integer k such that

$$
e d=1+k(p-1)(q-1)
$$

Moreover, since $e d>1$ and $p-1$ and $q-1$ are positive integers, it must be the case that k is a positive integer. Putting these together, we obtain

$$
R \equiv M^{1+k(p-1)(q-1)} \quad(\bmod n)
$$

for some positive integer k.
Substituting (9.1) gives

$$
R \equiv M\left(M^{p-1}\right)^{k(q-1)} \equiv M(1)^{k(q-1)} \equiv M \quad(\bmod p)
$$

and hence in this case we also have $R \equiv M(\bmod p)$.

Example 1 Carry out the following calculations for the RSA scheme with $p=5, q=11$ and $e=3$.

1. Determine the private key (d, n).

Solution: In this case, $n=5 \times 11=55$ and $(p-1)(q-1)=4 \times 10=40$. To find d, we solve

$$
3 d \equiv 1 \quad(\bmod 40)
$$

To do so, we set up the Linear Diophantine Equation

$$
40 x+3 d=1
$$

and use the Extended Euclidean Algorithm

x	d	r	q
1	0	40	0
0	1	3	0
1	-13	1	13
-3	40	0	3

Hence our solution for d is

$$
d \equiv-13 \quad(\bmod 40) .
$$

Since d must satisfy $1<d<40$, we obtain $d=40-13=27$, so the private key is the pair $(d, n)=(27,55)$.
2. Suppose Bob receives the ciphertext $C=47$. Decrypt C to determine the message M that was encrypted by Alice.
Solution: We wish to compute $R=47^{27}(\bmod 55)$. To simplify this computation, note that 5 and 11 are coprime, so by the Splitting Modulus Theorem, we can obtain R as the unique solution to the simultaneous congruences

$$
\begin{aligned}
& R \equiv 47^{27} \quad(\bmod 5) \\
\text { and } \quad R & \equiv 47^{27} \quad(\bmod 11) .
\end{aligned}
$$

Now $47 \equiv 2(\bmod 5)$ and $47 \equiv 3(\bmod 11)$, therefore we have $R \equiv 2^{27}(\bmod 5)$ and $R \equiv 3^{27}(\bmod 11)$. Since 5 and 11 are both prime numbers, we can apply Fermat's

Little Theorem $(\mathrm{F} \ell \mathrm{T})$, which gives $2^{4} \equiv 1(\bmod 5)$ and $3^{10} \equiv 1(\bmod 11)$. Hence, from $27=(6)(4)+3$, we obtain

$$
R \equiv 2^{27} \equiv\left(2^{4}\right)^{6} 2^{3} \equiv(1)^{6} 2^{3} \equiv 2^{3} \equiv 8 \equiv 3 \quad(\bmod 5)
$$

Similarly, from $27=2(10)+7$, we obtain

$$
R \equiv 3^{27} \equiv\left(3^{10}\right)^{2}(3)^{7} \equiv(1)^{2} 3^{7} \equiv 3^{7} \equiv(9)^{3} 3 \equiv(-2)^{3} 3 \equiv 9 \quad(\bmod 11)
$$

Therefore, we have to solve the simultaneous congruences

$$
\begin{array}{lll}
& R \equiv 3 \quad(\bmod 5) \\
\text { and } & R \equiv 9 \quad(\bmod 11) .
\end{array}
$$

Again note that 5 and 11 are coprime, and that these simultaneous congruences are linear, so by the Chinese Remainder Theorem, there is a unique solution modulo $5 \times 11=55$. To shorten our work, a quick check shows that $53 \equiv 3(\bmod 5)$ and $53 \equiv 9(\bmod 11)$, and so the unique solution to these simultaneous congruences is given by $R \equiv 53(\bmod 55)$. Hence we have $M=53$.

(Congruence Add and Multiply (CAM))

For all positive integers n, for all integers a_{1}, \ldots, a_{n}, and b_{1}, \ldots, b_{n}, if $a_{i} \equiv b_{i}(\bmod m)$ for all $1 \leq i \leq n$, then

1. $a_{1}+a_{2}+\cdots+a_{n} \equiv b_{1}+b_{2}+\cdots+b_{n}(\bmod m)$,
2. $a_{1} a_{2} \cdots a_{n} \equiv b_{1} b_{2} \cdots b_{n}(\bmod m)$.

(Congruence Power (CP))

For all positive integers n and integers a and b, if $a \equiv b(\bmod m)$, then $a^{n} \equiv b^{n}(\bmod m)$.

(Fermat's Little Theorem (F $\ell \mathbf{T}$))

For all prime numbers p and integers a not divisible by p, we have

$$
a^{p-1} \equiv 1 \quad(\bmod p)
$$

What is the remainder when 3167^{2531} is divided by 17 ?
Solution: Observe that

$$
3167 \equiv 5 \quad(\bmod 17)
$$

Also, since $17 \nmid 5$, by Fermat's Little Theorem we have

$$
5^{16} \equiv 1 \quad(\bmod 17)
$$

Then, using propositions Congruence Add and Multiply, and Congruence Power, we obtain

$$
3167^{2531} \equiv 5^{2531} \equiv 5^{16 \cdot 158+3} \equiv\left(5^{16}\right)^{158}\left(5^{3}\right) \equiv(1)^{158}(125) \equiv 6 \quad(\bmod 17)
$$

Since $0 \leq 6<17$, we conclude from the proposition Congruent To Remainder that the remainder is equal to 6 .

(Chinese Remainder Theorem (CRT))

For all integers a_{1} and a_{2}, and positive integers m_{1} and m_{2}, if $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$, then the simultaneous linear congruences

$$
\begin{aligned}
& n \equiv a_{1} \quad\left(\bmod m_{1}\right) \\
& n \equiv a_{2} \quad\left(\bmod m_{2}\right)
\end{aligned}
$$

(Prime Factorization (PF))
Every natural number $n>1$ can be written as a product of primes.

- Sum of two squares theorem. Let $n \in N$. Then there exist $a, b \in Z$ such that $n=a^{2}+b^{2}$ if and only if the prime decomposition of n contains no factor p^{k} where p has remainder 3 upon division by 4 and k is odd.
- Fermat's sum of two squares. For an odd prime p, there exist integers x, y satisfying $p=x^{2}+y^{2}$ if and only if reminder of p when divided by 4 is 1 .

Andrew Wiles

Theorem: There are infinitely many primes.

Let A, B, and C be the assigned prime numbers.
I say that there are more prime numbers than A, B, and C.
Take the least number $D E$ measured by A, B, and C. Add the unit $D F$ to $D E$ Then $E F$ is either prime or not.
First, let it be prime. Then the prime numbers A, B, C, and $E F$ have been found which are more than A, B, and C

- $\sum_{k=1}^{\infty} \frac{1}{2^{k}}<\infty$
- $\sum_{k=1}^{\infty} \frac{1}{k^{2}}<\infty$
- Question: Is there always a prime between n^{2} and $(n+1)^{2}$?
- $\sum_{p \text { prime }}^{\infty} \frac{1}{p}>\infty$
- Prime number theorem: Number $\pi(n)$ of primes less than n satisfies $\lim _{n \rightarrow \infty} \frac{\pi(n)}{n / \log (n)} \rightarrow 1$
- Riemann Zeta function:

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p \text { prime }} \frac{1}{1-p^{-s}}
$$

https://rationalwiki.org/wiki/Fun:Proof that all odd numbers are prime
http://aleph0.clarku.edu/~djoyce/elements/aboutText.html

More questions:

- The Odd Goldbach Problem: Every odd $n>5$ is the sum of three primes.
- Goldbach's Conjecture: Every even $\mathrm{n}>2$ is the sum of two primes.
- Every even number is the difference of two primes.
- For every even number $2 n$ are there infinitely many pairs of consecutive primes which differ by $2 n$.

