Extended Euclidean Algorithm (EEA)

Input: Integers a, b with a > b > 0.

Initialize: Construct a table with four columns so that

e the columns are labelled z, y, » and ¢,
e the first row in the table is (1,0, a,0),

e the second row in the table is (0,1,5,0).
Repeat: For i > 3,

KRt

o Row; < Row;_o — ¢;Row;_;

Stop: When r; = 0.

Output: Set n =i — 1. Then ged(a.b) = ry,, and s = v, and t = y,, are a certificate of
correctness.




9.3 Proving that the RSA Scheme Works

Now that we have seen two examples of RSA and the associated computations, we prove
in the following result that the RSA scheme always works. What we mean by this is that
we prove the Claim: R = M, that the plaintext message M and the decrypted message
received R are identical.

Theorem 1 (RSA Works (RSA))
For all integers p, ¢, n, e, d, M, C and R, if

1. p and ¢ are distinct primes,

2. n=pg,

3. e and d are positive integers such that ed =1 (mod (p—1)(¢— 1)) and

4. 0< M < n,

Me¢ =C (mod n) where 0 < C' < n,
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6. C?= R (mod n) where 0 < R < n,

then R = M.

Proof: Let p, ¢, n, e, d, M, C and R be arbitrary integers, and assume that they satisfy
parts 1 — 6 of the hypothesis. Now, from parts 5 and 6 of the hypothesis, we have



R=cC'= (M) =M (modn).

Since p and ¢ are distinct primes, they must be coprime. Therefore, since n = pq, we can
apply the Splitting Modulus Theorem to obtain that

R=M*"(mod p)

and
R=M*“ (mod q).

Now, we prove that R = M (mod p), by considering the two cases p | M and p{ M.

e Case 1: If p

M, then we have M =0 (mod p), and therefore,
R=0"=0 (mod p).
Hence in this case both R and M are congruent to 0 modulo p, giving R = M (mod p).
e Case 2: If p{ M, then p and M are coprime, so by Fermat’s Little Theorem, we have

MP~'=1 (mod p). (9.1)

From part 3 of the hypothesis and the definitions of congruence and divisibility, there
exists an integer k such that

ed=1+Fk(p—1)(g—1).

Moreover, since ed > 1 and p — 1 and ¢ — 1 are positive integers, it must be the case
that k is a positive integer. Putting these together, we obtain

R = M'FRe=Da=1 " (1h0d n),

for some positive integer k.

Substituting (9.1)) gives
R= MM = M)k = M (mod p),

and hence in this case we also have R = M (mod p).



Example 1

Carry out the following calculations for the RSA scheme with p =5, ¢ = 11 and e = 3.

1. Determine the private key (d, n).

Solution: In this case, n =5 x 11 =55 and (p—1)(¢—1) =4 x 10 = 40. To find d,
we solve
3d=1 (mod 40).

To do so, we set up the Linear Diophantine Equation
40z + 3d = 1

and use the Extended Euclidean Algorithm

T d r | q
1 0 |40 0
0 1 310
1 | =131 |13
—3 | 40 0| 3

Hence our solution for d is
= —13 (mod 40).

Since d must satisfy 1 < d < 40, we obtain d = 40 — 13 = 27, so the private key is the
pair (d,n) = (27,55).

. Suppose Bob receives the ciphertext C' = 47. Decrypt C' to determine the message M

that was encrypted by Alice.

Solution: We wish to compute R = 477 (mod 55). To simplify this computation,
note that 5 and 11 are coprime, so by the Splitting Modulus Theorem, we can obtain
I? as the unique solution to the simultaneous congruences

R=47" (mod 5)
and R =47 (mod 11).

Now 47 = 2 (mod 5) and 47 = 3 (mod 11), therefore we have R = 27 (mod 5) and
R = 3" (mod 11). Since 5 and 11 are both prime numbers, we can apply Fermat’s



Little Theorem (F¢T), which gives 2 = 1 (mod 5) and 3!° = 1 (mod 11). Hence,
from 27 = (6)(4) + 3, we obtain

R=27=029%23=1)2>=2=8=3 (mod 5).

R=37"=(319%3)"=(1)3"=3"=(9)3=(-2)’3=9 (mod 11).
Therefore, we have to solve the simultaneous congruences

R =3 (mod)5)
and R=9 (mod 11).

Again note that 5 and 11 are coprime, and that these simultaneous congruences are
linear, so by the Chinese Remainder Theorem, there is a unique solution modulo
5 x 11 = 55. To shorten our work, a quick check shows that 53 = 3 (mod 5) and
53 = 9 (mod 11), and so the unique solution to these simultaneous congruences is
given by R =53 (mod 55). Hence we have M = 53.

(Congruence Add and Multiply (CAM))

For all positive integers n, for all integers ayq,...,a,. and by..

all 1 <i < n, then

l. aiy+ag+---+a,=by +by+---+b, (mod m),

2. ajas---ay = biby -+ - b, (mod m).

..y by, if a; = b; (mod m) for



(Congruence Power (CP))

For all positive integers n and integers a and b, if a = b (mod m), then ™ = b" (mod m).

(Fermat’s Little Theorem (F(T))

For all prime numbers p and integers a not divisible by p. we have

aP =1 (mod p).

What is the remainder when 3167253 is divided by 177

Solution: Observe that
3167=5 (mod 17).

Also, since 17 1 5, by Fermat’s Little Theorem we have
51 =1 (mod 17).
Then, using propositions Congruence Add and Multiply, and Congruence Power, we obtain

31672931 = 52531 = 51015843 = (516)158(53) = (1)198(125) =6 (mod 17).

Since 0 < 6 < 17, we conclude from the proposition Congruent To Remainder that the
remainder is equal to 6.

(Chinese Remainder Theorem (CRT))

For all integers a; and ag, and positive integers mq and meo, if ged(mq, mg) = 1, then the

simultaneous linear congruences

=a; (mod my)
=ay (mod ma)



(Prime Factorization (PF))

Every natural number n > 1 can be written as a product of primes.

- Sum of two squares theorem. Let n € N. Then there exist a,b € Z such that n = a? + b? if and only

if the prime decomposition of n contains no factor p* where p has remainder 3 upon division by 4 and
k is odd.

- Fermat’s sum of two squares. For an odd prime p, there exist integers x, y satisfyingp = x2 + y? if
and only if reminder of p when divided by 4 is 1.
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Theorem: There are infinitely many primes.

Physicist:

In fact, every odd number is prime:

3is prime, 5 is prime, 7 is prime, 9 is
experimental error, 11 is prime, 13 is prime,
15 is experimental error, 17 is prime, 19 is
prime...

The empirical evidence is overwhelming!




Fuclid's Elements
Book 1TX

Proposition 20

Prime numbers are more than any assigned multitude of prime numbers.
Let A, B, and C be the assigned prime numbers.

1 say that there are more prime numbers than 4, B, and C.
Take the least number DE measured by 4, B, and C. Add the unit DF to DE.

Then EF is either prime or not.

First, let it be prime. Then the prime numbers 4, B, C, and EF have been found which are more than 4, B, and C.

.i‘ Next, let EF not be prime. Therefore it is measured by some prime number. Let it be measured by the prime number G. VIL3]
B I'say that G is not the same with any of the numbers 4, B, and C.
c If possible, let it be so. Now 4, B, and C measure DE, therefore G also measures DE. But it also measures EF. Therefore (7, being a number, measures the remainder, the unit DF, which is absurd.
Therefore G is not the same with any one of the numbers 4, B, and C. And by hypothesis it is prime. Therefore the prime numbers 4, B, C, and G have been found which are more than the assigned multitude of 4, B, and C.
E D r Therefore, prime numbers are more than any assigned multitude of prime numbers.
QED.

Question: Are there infinitely many primes of the form n® + 1?




1
Yk=15% < ©
1
Question: Is there always a prime between n? and (n + 1)??

1
(0 0]
Zp prime ; > ®

Prime number theorem: Number (n) of primes less than n satisfies lim )

n-oo n/log (n)

Riemann Zeta function:




-Psychology of Invention in the Mathematical Field, Jacques Hadamard

https://rationalwiki.org/wiki/Fun:Proof that all odd numbers are prime
http://aleph0.clarku.edu/~djoyce/elements/aboutText.html

More questions:

The Odd Goldbach Problem: Every odd n > 5 is the sum of three primes.

Goldbach's Conjecture: Every even n > 2 is the sum of two primes.

Every even number is the difference of two primes.

For every even number 2n are there infinitely many pairs of consecutive primes which differ by 2n.


https://rationalwiki.org/wiki/Fun:Proof_that_all_odd_numbers_are_prime
http://aleph0.clarku.edu/~djoyce/elements/aboutText.html

